Differential forms : theory and practice / by Steve Weintraub.

By: Material type: TextTextPublisher: Oxford, UK : Elsevier, 2014Edition: Second editionDescription: xi;395pagesContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
Subject(s): Genre/Form: Additional physical formats: Print version:: No titleDDC classification:
  • 515/.37 23 WEI
LOC classification:
  • QA381 WEI
Contents:
Half Title; Title Page; Copyright; Dedication; Contents; Preface; 1 Differential Forms in Rn, I; 1.0 Euclidean spaces, tangent spaces, and tangent vector fields; 1.1 The algebra of differential forms; 1.2 Exterior differentiation; 1.3 The fundamental correspondence; 1.4 The Converse of Poincaré's Lemma, I; 1.5 Exercises; 2 Differential Forms in Rn, II; 2.1 1-Forms; 2.2 k-Forms; 2.3 Orientation and signed volume; 2.4 The converse of Poincaré's Lemma, II; 2.5 Exercises; 3 Push-forwards and Pull-backs in Rn; 3.1 Tangent vectors; 3.2 Points, tangent vectors, and push-forwards.
3.3 Differential forms and pull-backs3.4 Pull-backs, products, and exterior derivatives; 3.5 Smooth homotopies and the Converse of Poincaré's Lemma, III; 3.6 Exercises; 4 Smooth Manifolds; 4.1 The notion of a smooth manifold; 4.2 Tangent vectors and differential forms; 4.3 Further constructions; 4.4 Orientations of manifolds'227intuitive discussion; 4.5 Orientations of manifolds'227careful development; 4.6 Partitions of unity; 4.7 Smooth homotopies and the Converse of Poincaré's Lemma in general; 4.8 Exercises; 5 Vector Bundles and the Global Point of View.
5.1 The definition of a vector bundle5.2 The dual bundle, and related bundles; 5.3 The tangent bundle of a smooth manifold, and related bundles; 5.4 Exercises; 6 Integration of Differential Forms; 6.1 Definite integrals in textmathbbRn; 6.2 Definition of the integral in general; 6.3 The integral of a 0-form over a point; 6.4 The integral of a 1-form over a curve; 6.5 The integral of a 2-form over a surface; 6.6 The integral of a 3-form over a solid body; 6.7 Chains and integration on chains; 6.8 Exercises; 7 The Generalized Stokes's Theorem; 7.1 Statement of the theorem.
7.2 The fundamental theorem of calculus and its analog for line integrals7.3 Cap independence; 7.4 Green's and Stokes's theorems; 7.5 Gauss's theorem; 7.6 Proof of the GST; 7.7 The converse of the GST; 7.8 Exercises; 8 de Rham Cohomology; 8.1 Linear and homological algebra constructions; 8.2 Definition and basic properties; 8.3 Computations of cohomology groups; 8.4 Cohomology with compact supports; 8.5 Exercises; Index; A; B; C; D; E; F; G; H; I; L; M; N; O; P; R; S; T; V; W.
Summary: Differential forms are utilized as a mathematical technique to help students, researchers, and engineers analyze and interpret problems where abstract spaces and structures are concerned, and when questions of shape, size, and relative positions are involved. Differential Forms has gained high recognition in the mathematical and scientific community as a powerful computational tool in solving research problems and simplifying very abstract problems through mathematical analysis on a computer. Differential Forms, 2nd Edition, is a solid resource for students and prof.
Item type: Books
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Copy number Status Date due Barcode
Books Books GSU Library Epoch General Stacks QA381WEI (Browse shelf(Opens below)) 2014 Available 50000001673

Includes bibliographical references and index.

Half Title; Title Page; Copyright; Dedication; Contents; Preface; 1 Differential Forms in Rn, I; 1.0 Euclidean spaces, tangent spaces, and tangent vector fields; 1.1 The algebra of differential forms; 1.2 Exterior differentiation; 1.3 The fundamental correspondence; 1.4 The Converse of Poincaré's Lemma, I; 1.5 Exercises; 2 Differential Forms in Rn, II; 2.1 1-Forms; 2.2 k-Forms; 2.3 Orientation and signed volume; 2.4 The converse of Poincaré's Lemma, II; 2.5 Exercises; 3 Push-forwards and Pull-backs in Rn; 3.1 Tangent vectors; 3.2 Points, tangent vectors, and push-forwards.

3.3 Differential forms and pull-backs3.4 Pull-backs, products, and exterior derivatives; 3.5 Smooth homotopies and the Converse of Poincaré's Lemma, III; 3.6 Exercises; 4 Smooth Manifolds; 4.1 The notion of a smooth manifold; 4.2 Tangent vectors and differential forms; 4.3 Further constructions; 4.4 Orientations of manifolds'227intuitive discussion; 4.5 Orientations of manifolds'227careful development; 4.6 Partitions of unity; 4.7 Smooth homotopies and the Converse of Poincaré's Lemma in general; 4.8 Exercises; 5 Vector Bundles and the Global Point of View.

5.1 The definition of a vector bundle5.2 The dual bundle, and related bundles; 5.3 The tangent bundle of a smooth manifold, and related bundles; 5.4 Exercises; 6 Integration of Differential Forms; 6.1 Definite integrals in textmathbbRn; 6.2 Definition of the integral in general; 6.3 The integral of a 0-form over a point; 6.4 The integral of a 1-form over a curve; 6.5 The integral of a 2-form over a surface; 6.6 The integral of a 3-form over a solid body; 6.7 Chains and integration on chains; 6.8 Exercises; 7 The Generalized Stokes's Theorem; 7.1 Statement of the theorem.

7.2 The fundamental theorem of calculus and its analog for line integrals7.3 Cap independence; 7.4 Green's and Stokes's theorems; 7.5 Gauss's theorem; 7.6 Proof of the GST; 7.7 The converse of the GST; 7.8 Exercises; 8 de Rham Cohomology; 8.1 Linear and homological algebra constructions; 8.2 Definition and basic properties; 8.3 Computations of cohomology groups; 8.4 Cohomology with compact supports; 8.5 Exercises; Index; A; B; C; D; E; F; G; H; I; L; M; N; O; P; R; S; T; V; W.

Differential forms are utilized as a mathematical technique to help students, researchers, and engineers analyze and interpret problems where abstract spaces and structures are concerned, and when questions of shape, size, and relative positions are involved. Differential Forms has gained high recognition in the mathematical and scientific community as a powerful computational tool in solving research problems and simplifying very abstract problems through mathematical analysis on a computer. Differential Forms, 2nd Edition, is a solid resource for students and prof.

Print version record.

There are no comments on this title.

to post a comment.
Share