Data mining : practical machine learning tools and techniques. Ian H. Witten, Eibe Frank, Mark A. Hall.
Material type: TextPublisher: Amsterdam, Netherlands : Elsevier/Morgan Kaufmann, [2011]Copyright date: ©2011Edition: Third editionDescription: xxxiii, 629 pages : illustrations ; 24 cmContent type:- text
- unmediated
- volume
- 9780123748560
- 0123748569
- 006.3/12 22
- QA76.9 WIT
Item type | Current library | Collection | Call number | Copy number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
Books | GSU Library Epoch General Stacks | NFIC | QA76.9WIT (Browse shelf(Opens below)) | 1 | Available | 50000005011 | ||
Books | GSU Library Epoch General Stacks | NFIC | QA76.9WIT (Browse shelf(Opens below)) | 2 | Available | 50000005012 |
Browsing GSU Library Epoch shelves, Shelving location: General Stacks Close shelf browser (Hides shelf browser)
Includes bibliographical references (pages 587-605) and index.
Part I. Machine Learning Tools and Techniques: 1. What's iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned -- Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond -- Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer -- 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer.
There are no comments on this title.